Vol.31, Suppl. March, 2004

文章编号: 0258-7025(2004)Supplement-0307-03

生物芯片的激光共聚焦扫描检测

王立强, 倪旭翔, 陆祖康, 李映笙,郑旭峰

(浙江大学国家光学仪器工程技术研究中心,浙江 杭州 310027)

摘要 介绍了基于荧光标记的生物芯片扫描检测方法,主要分为两大类,以光电倍增管(PMT)为荧光探测器的共聚焦扫描检测方 法和以 CCD 为荧光探测器的全视场扫描检测方法。重点介绍一种采用双波长(532 nm 及 635 nm)激光器作为激发光源,以激光共 聚焦原理所设计的生物芯片荧光信息检测技术,由一个光电倍增管分时实现 cy3 与 cy5 两种荧光信号的检测。生物芯片的横向扫 描由远心 *f*-θ 扫描物镜与振镜实现,纵向扫描由步进电机驱动精密导轨实现。实验结果表明,检测技术的分辨率可达到 5 μm,信噪 比高达 10^a,检测灵敏度最高为 1 fluor/μm²,并且扫描速度快, cy3 与 cy5 之间无串扰。

关键词 激光技术; 生物芯片; 激光共聚焦扫描; 荧光检测; 分辨率; 信噪比; 灵敏度 中图分类号 Q631 文献标识码 A

Fluorescence Detection for Biochips by Laser Confocal Scanning

WANG Li-qiang, NI Xu-xiang, LU Zu-kang, LI Ying-sheng, ZHNEG Xu-feng (CNERC for Optical Instrument, Zhejiang University, Hangzhou, Zhejiang 310027, China)

Abstract Scanning detection of biochip based on fluorescence labeling is introduced in the paper, the detection method can be divided into two category: one is confocal scanning detection method in which a photomultiplier tube is used as fluorescence sensor, the other is flood illumination of the entire biochip and uses CCD as fluorescence sensor. A novel method of fluorescence detection for biochips is presented, which uses a 532 nm laser and 635nm laser to excite the fluorescent dyes according the principle of laser confocal scanning. The fluorescence emitted from cy3 and cy5 is detected using a photomultiplier tube (PMT) sequentially. One dimension scanning of the biochips is performed by a telecentric $f-\theta$ objective with a moving coil optical scanner, the other dimension is scanned by a stepping motor driving the precision guidance. The experiment results state that the resolution of the presented technology is 5 µm, the signal-to-noise ratio can reach 10³ and the detection limit is 1 fluor/µm², and the cross-talk phenomenon is eliminated completely.

Key words laser technigue; biochip; laser confocal scanning; fluorescence detection; resolution; signal-to-noise ratio; detection limit

1引言

生物芯片(biochip)是 20 世纪 90 年代中期发展 起来的一项尖端技术,它以玻片、硅片或尼龙等为载 体,在单位面积上高密度地排列大量的生物材料,从 而实现一次试验能同时检测多种疾病或分析多种生 物样品的功能。生物芯片可广泛应用于药物研究、 疾病诊断、基因结构与功能研究等领域^[1,2]。

生物芯片是采用分子杂交原理进行工作的,其 基本做法是将要检测的样品加以荧光染料标记,然 后与已知结构的生物芯片进行充分杂交,再加以洗 脱后,检测发生杂交反应位置处的荧光信号,并以图 像形式显示出来。

2 扫描检测方法

生物芯片的荧光扫描检测方法根据所采用的光 电探测器类型可分为基于光电倍增管(PMT)的荧光 扫描检测和基于 CCD 的荧光扫描检测两种。基于 PMT 的荧光扫描检测方法均采用光学共聚焦原理 来提高检测灵敏度,其设计原理类似于激光共聚焦 显微镜,如图 1 所示^[3]:从光源发出的光由物镜聚焦 到生物芯片上一点,激发荧光分子发射出荧光,此时 只有该点所发射出的荧光能通过光电倍增管前面的 共焦光阑,而生物芯片上其他点所发射出的荧光或 杂散光就被共焦光阑阻挡,不能进入到光电倍增管, 很好的分离了所需的信号荧光和背景杂散光,提高

基金项目: 国家自然科学重点基金(30227002)资助项目。

作者简介:王立强(1977-),男,浙江大学博士研究生,主要从事生物光学及光电检测技术研究。E-mail:wangliqiang@zjuedu.cn

了荧光检测灵敏度。

Fig.1 Confocal detection principle

基于 CCD 的全视场扫描检测装置相对于基于 PMT 的共聚焦扫描检测装置来说比较简单,其激发 光源多采用氙灯或高压汞灯,也有采用激光作为激 发光源的,单色系统采用激发光窄带干涉滤光片来 实现,一般有数片,由电机驱动选择。CCD 镜头前装 有电机驱动选择的发射光窄带干涉滤光片。其基本 原理如图 2 所示。

图 2 基于 CCD 的全视场扫描检测原理示意图 Fig.2 Fluorescence scanning based CCD sensor

光源所发出的光线经激发光窄带干涉滤光片后 变成单色光,去激发生物芯片产生荧光,经发射光窄 带干涉滤光片后成像在 CCD 芯片上。CCD 一次只 能读取一个激发波长下的图像,对于多色荧光物质 标记的芯片,需要更换激发光窄带干涉滤光片和发 射光窄带干涉滤光片,再次读取。由于 CCD 检测仪 器是同时读取整个芯片,因此不需要 *X*-*Y*二维移动 平台,扫描速度较激光共聚焦扫描仪器快,一般仅耗 时 0.5~2 min。

3 共聚焦扫描系统的设计

在实验中,生物芯片的纵向扫描由步进电机驱动 精密导轨,移动生物芯片工作平台来实现,而生物芯 片的横向扫描由振镜的旋转摆动及 *f*-0 物镜相结合 来实现^(a),由于振镜的扫描频率可高达 100 Hz,因此生 物芯片的扫描检测速度很快,而且运转平稳、震动噪声小。整个系统的工作原理如图3所示。

图 3 光机扫描相结合的生物芯片扫描仪 Fig.3 Microarray scanner based on optical and mechanical scanning

在设计的扫描仪中,荧光的扫描检测是分时进行的。635 nm 的激光首先对生物芯片扫描,此时532 nm 的激光由光阑挡住,与此相应,光电倍增管前的滤色片对应 cy5 荧光。当 635 nm 激光扫描结束后,光阑进行切换,挡住 635 nm 激光,而让532 nm 激光通过,对生物芯片进行另一种波长扫描,此时光电倍增管前的滤色片也对应 cy3 荧光。 光电倍增管的信号由放大电路放大,再经过 AD 转换,由计算机重建扫描图像。

4 系统性能分析

对生物芯片扫描检测系统来说,衡量其性能 的指标主要有扫描面积、扫描时间、分辨率、检测 灵敏度等。

4.1 扫描面积与扫描时间

扫描区域为 70 mm×22 mm, 在扫描分辨率为 5 μm,振镜扫描频率为 50 Hz 时,分时检测 cy3 与 cy5 两种荧光信号需耗时

$$t_{\text{scan}} = \frac{70 \text{ mm}}{50 \text{ Hz} \times 5 \text{ }\mu\text{m}} \times 2 = 560 \text{ s}$$
 (1)

扫描速度比目前商业化的共聚焦生物芯片扫描仪 快,且由于分时检测两种荧光,因此信号之间没有 cross-talk效应。

4.2 分辨率

扫描仪的分辨率主要由聚焦在生物芯片表面的

王立强等: 生物芯片的激光共聚焦扫描检测

Supplement

激光光斑尺寸决定。由于 f-θ物镜的衍射效应, 准直 后光束直径为 D的激光聚焦在生物芯片表面的艾 里斑半径 r₀ 为

$$_{0}=1.22f(\lambda/D) \tag{2}$$

λ 为激光波长,光学分辨率要达到 5 μm,必须使 $r_0 \le 5$ μm。图 4 为 $D_{2-502 \text{ mm}} = 5$ mm 时扫描获得的分辨 率图(图上数值表示黑线的实际宽度,单位为 μm),扫 描步长为 5 μm,可以看出本系统的光学分辨率可以 达到 5 μm。

图 4 分辨率图像(绿激光直径 5 mm,扫描步长 5 μm) Fig.4 Resolution image obtained when green laser diameter is 5 mm and the scanning step is 5 μm

4.3 检测灵敏度

生物芯片扫描仪系统的背景与噪声决定了检测 灵敏度。

背景 B 正比于 PMT 前共焦小孔的直径,该小 孔直径越小,背景就越小,然而 PMT 能收集的荧光 信号也会随之下降,因此要选择一个最优的共焦小 孔尺寸^{III},本系统的共焦小孔直径为 200 μm。背景 B 还与系统的杂散光、荧光滤色片性能有关,要尽量消 除杂散光,同时选择高性能的荧光窄带滤色片。

噪声 N 则主要包括 PMT 的暗电流噪声与散粒 噪声,应该选择暗电流很小的 PMT,散粒噪声则由 入射到 PMT 的总光子数决定,为 PMT 探测总光强 的平方根,总体来说,信噪比随信号 S 的增大而增 大。PMT 的后续处理电路也必须精心设计,使其输 出噪声最小。

用荧光定标片对扫描仪的探测灵敏度及动态范

围进行评定,结果如图5所示。

准确探测荧光强度的下限是 SNR=3,此时能探测到的荧光分子数定义为本系统的探测灵敏度。图 5 中竖线所在列的荧光图像其 SNR 大约为 3,此列 荧光浓度为 1 fluor/µm²,因此本扫描仪的探测灵敏 度为 1 fluor/µm²。

本扫描仪选择的光电倍增管为 H7712 型,其输 出信号经 16 位模数转换器转换后送入计算机,由计 算机重建扫描图像,图 6 为本系统扫描获得的部分 蛋白芯片图像,其信噪比最高可达 10³。

•						

图 6 蛋白芯片图像(扫描分辨率 10 µm) Fig.6 Protein microarray image obtained (scanning resolution is 10 µm)

5小结

激光共聚焦扫描检测系统已经应用于生物芯片 的荧光检测,它的最大优点在于以振镜的旋转摆动及 *f-θ*物镜取代了常规的直线电机扫描装置,具有扫描 速度快、运转平稳、震动噪声小等优点。然而,由于要 获得大尺寸的均匀扫描视场(22 mm),使得*f-θ*物镜 必须设计成长焦距系统(*f*=36mm),从而导致数值孔 径较小(*NA*=0.3),荧光收集效率较低,系统的探测灵 敏度不够高,这是本系统以后需要改进的地方。本系 统用一个 PMT 分时检测 cy3 与 cy5 的荧光信号,消 除了两种信号之间的串扰。

参考文献

- W. Ye Rick, Wang Tao, Bedzyk Laura et al.. Applications of DNA microarrays in microbial systems [J]. J. Microbiological Methods, 2001, 47(3): 257-272
- 2 Neelam Dhiman, Ruben Bonilla, Dennis O'Kane J et al.. Gene expression microarrays: a 21st century tool for directed vaccine design[J]. Vaccine. 2002, 20(1~2): 22~30
- 3 S. P. A. Fodor, R. P. Rava, X. C. Huang *et al.*. Multiplexed biochemical assays with biological chips[J]. *Nature*, 1993, 364 (6437): 555~556
- 4 Leo Beiser. Fundamental architecture of optical scanning systems[J]. Appl. Opt., 1995, 34(31): 7307-7317
- 5 D. R. Sandison, D. W. Piston, R. M. Williams *et al.* Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes[J]. *Appl. Opt.*, 1995, **34**(19): 3576-3588